Search any question & find its solution
Question:
Answered & Verified by Expert
In $\triangle \mathrm{ABC}, \frac{\mathrm{r}_1-\mathrm{r}}{\mathrm{a}}+\frac{\mathrm{r}_2-\mathrm{r}}{\mathrm{b}}=$
Options:
Solution:
1466 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathrm{c}}{\mathrm{r}_3}$
$\frac{r_1-r}{a}+\frac{r_{2-r}}{b}=\frac{\frac{\Delta}{s-a}-\frac{\Delta}{s}}{a}+\frac{\frac{\Delta}{s-b}-\frac{\Delta}{s}}{b}$
$\begin{aligned} & =\frac{\Delta}{a} \cdot \frac{s-s+a}{s(\mathrm{~s}-a)}+\frac{\Delta}{b} \frac{s-s+b}{s(\mathrm{~s}-\mathrm{b})}=\frac{\Delta}{s(s-a)}+\frac{\Delta}{s(s-b)} \\ & =\frac{\Delta}{s} \cdot \frac{s-b+s-a}{(s-a)(s-b)} \\ & =\frac{\Delta(a+b+c-b-a)(s-c)}{\Delta^2}=\frac{c}{\frac{\Delta}{s-c}}=\frac{c}{r_3}\end{aligned}$
$\begin{aligned} & =\frac{\Delta}{a} \cdot \frac{s-s+a}{s(\mathrm{~s}-a)}+\frac{\Delta}{b} \frac{s-s+b}{s(\mathrm{~s}-\mathrm{b})}=\frac{\Delta}{s(s-a)}+\frac{\Delta}{s(s-b)} \\ & =\frac{\Delta}{s} \cdot \frac{s-b+s-a}{(s-a)(s-b)} \\ & =\frac{\Delta(a+b+c-b-a)(s-c)}{\Delta^2}=\frac{c}{\frac{\Delta}{s-c}}=\frac{c}{r_3}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.