Search any question & find its solution
Question:
Answered & Verified by Expert
In $\triangle \mathrm{ABC}$, if $\cos \mathrm{A}+\cos \mathrm{C}=4 \sin ^2 \frac{\mathrm{B}}{2}$, then the ratio between the perimeter of the triangle and $(a+c)$ is
Options:
Solution:
1982 Upvotes
Verified Answer
The correct answer is:
$3: 2$
Given $\cos A+\cos C=4 \sin ^2 \frac{B}{2}$
$\begin{aligned}
& \Rightarrow 2 \cos \left(\frac{A+C}{2}\right)+\cos \left(\frac{A-C}{2}\right)=4 \sin ^2 \frac{B}{2} \\
& \Rightarrow \cos \left(\frac{A-C}{2}\right)=2 \sin \frac{B}{2} \\
& \Rightarrow \cos \frac{A}{2} \cdot \cos \frac{C}{2}+\sin \frac{A}{2} \sin \frac{C}{2}=2 \sin \frac{B}{2} \\
& \Rightarrow \sqrt{\frac{s(s-a)}{b c}} \sqrt{\frac{s(s-c)}{a b}}+\sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \\
& =2 \sqrt{\frac{(s-a)(s-c)}{a c}} \\
& \Rightarrow \frac{s}{b}+\frac{s-b}{b}=2 \\
& \Rightarrow a+c=2 b
\end{aligned}$
Now, $\frac{a+b+c}{a+c}=\frac{2 b+b}{2 b}=\frac{3}{2}=3: 2$
$\begin{aligned}
& \Rightarrow 2 \cos \left(\frac{A+C}{2}\right)+\cos \left(\frac{A-C}{2}\right)=4 \sin ^2 \frac{B}{2} \\
& \Rightarrow \cos \left(\frac{A-C}{2}\right)=2 \sin \frac{B}{2} \\
& \Rightarrow \cos \frac{A}{2} \cdot \cos \frac{C}{2}+\sin \frac{A}{2} \sin \frac{C}{2}=2 \sin \frac{B}{2} \\
& \Rightarrow \sqrt{\frac{s(s-a)}{b c}} \sqrt{\frac{s(s-c)}{a b}}+\sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \\
& =2 \sqrt{\frac{(s-a)(s-c)}{a c}} \\
& \Rightarrow \frac{s}{b}+\frac{s-b}{b}=2 \\
& \Rightarrow a+c=2 b
\end{aligned}$
Now, $\frac{a+b+c}{a+c}=\frac{2 b+b}{2 b}=\frac{3}{2}=3: 2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.