Search any question & find its solution
Question:
Answered & Verified by Expert
In $\triangle \mathrm{ABC}$, if $\mathrm{r}$ is the inradius and $\mathrm{r}_1, \mathrm{r}_2, \mathrm{r}_3$ are the ex-radii, then $\frac{1}{4}\left[b^2 \sin 2 C+c^2 \sin 2 B\right]=$
Options:
Solution:
1551 Upvotes
Verified Answer
The correct answer is:
$\mathrm{rr}_1 \cot \frac{\mathrm{A}}{2}$
$\frac{1}{4}\left[b^2 \sin 2 C+c^2 \sin 2 B\right]$
$\begin{aligned} & =\frac{1}{4}\left[b^2 \cdot 2 \sin C \cdot \cos C+c^2 \cdot 2 \sin B \cdot \cos B\right] \\ & =\frac{1}{2}\left[b^2 \cos C \cdot \frac{2 \Delta}{a b}+c^2 \cdot \cos B \cdot \frac{2 \Delta}{c a}\right]\left[\because \sin A=\frac{2 \Delta}{b c}\right] \\ & =\frac{\Delta}{a}[b \cos C+c \cos B]=\Delta[\because a=b \cos C+c \cos B] \\ & \because r r_1 \cot \frac{A}{2}=\frac{\Delta}{s} \cdot \frac{\Delta}{s-a} \cdot \frac{s(s-a)}{\Delta}=\Delta \\ & \therefore \frac{1}{4}\left[b^2 \sin 2 C+c^2 \sin 2 B\right]=r r_1 \cot \frac{A}{2}\end{aligned}$
$\begin{aligned} & =\frac{1}{4}\left[b^2 \cdot 2 \sin C \cdot \cos C+c^2 \cdot 2 \sin B \cdot \cos B\right] \\ & =\frac{1}{2}\left[b^2 \cos C \cdot \frac{2 \Delta}{a b}+c^2 \cdot \cos B \cdot \frac{2 \Delta}{c a}\right]\left[\because \sin A=\frac{2 \Delta}{b c}\right] \\ & =\frac{\Delta}{a}[b \cos C+c \cos B]=\Delta[\because a=b \cos C+c \cos B] \\ & \because r r_1 \cot \frac{A}{2}=\frac{\Delta}{s} \cdot \frac{\Delta}{s-a} \cdot \frac{s(s-a)}{\Delta}=\Delta \\ & \therefore \frac{1}{4}\left[b^2 \sin 2 C+c^2 \sin 2 B\right]=r r_1 \cot \frac{A}{2}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.