Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle \mathrm{ABC},\left(\tan \frac{\mathrm{A}}{2}+\tan \frac{\mathrm{B}}{2}\right) \tan \frac{\mathrm{C}}{2}=$
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2023 (17 May Shift 1)
Options:
  • A $\frac{2 c}{a+b+c}$
  • B $\frac{2 c}{a+b-c}$
  • C $\frac{2 c^2}{a^2+b^2+c^2}$
  • D $\frac{c}{a+b+c}$
Solution:
2673 Upvotes Verified Answer
The correct answer is: $\frac{2 c}{a+b+c}$
$\begin{aligned} & \text {}\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \tan \frac{C}{2} \\ & =\tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2} \\ & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\ & \quad+\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\ & =\frac{s-b}{s}+\frac{s-a}{s}=\frac{2 s-a-b}{s} \\ & =\frac{a+b+c-a-b}{\left(\frac{a+b+c}{2}\right)}=\frac{2 c}{a+b+c}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.