Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle \mathrm{ABC}$ with usual notation, $\frac{\cos \mathrm{A}}{\mathrm{a}}=\frac{\cos \mathrm{B}}{\mathrm{b}}=\frac{\cos \mathrm{C}}{\mathrm{c}}$ and $\mathrm{a}=\frac{1}{\sqrt{6}}$, then the area of triangle is
MathematicsProperties of TrianglesMHT CETMHT CET 2023 (13 May Shift 1)
Options:
  • A $\frac{1}{8}$ sq. units.
  • B $\frac{1}{24 \sqrt{3}}$
  • C $\frac{1}{24}$
  • D $\frac{1}{8 \sqrt{3}}$
Solution:
2150 Upvotes Verified Answer
The correct answer is: $\frac{1}{8 \sqrt{3}}$
If $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$, then the triangle is equilateral.
$$
\begin{aligned}
\therefore \quad \mathrm{A}(\triangle \mathrm{ABC}) & =\frac{\sqrt{3}}{4} \mathrm{a}^2 \\
& =\frac{\sqrt{3}}{4}\left(\frac{1}{\sqrt{6}}\right)^2 \\
& =\frac{\sqrt{3}}{24}=\frac{1}{8 \sqrt{3}} \text { sq. units }
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.