Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle \mathrm{ABC}$, with usual notations, $2 \mathrm{ac} \sin \left(\frac{1}{2}(\mathrm{~A}-\mathrm{B}+\mathrm{C})\right)$ is equal to
MathematicsProperties of TrianglesMHT CETMHT CET 2023 (14 May Shift 1)
Options:
  • A $a^2+b^2-c^2$
  • B $c^2+a^2-b^2$
  • C $b^2-c^2-a^2$
  • D $c^2-a^2-b^2$
Solution:
2047 Upvotes Verified Answer
The correct answer is: $c^2+a^2-b^2$
$\begin{aligned} 2 \mathrm{ac} \sin \frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2} & =2 \mathrm{ac} \sin \frac{\pi-2 \mathrm{~B}}{2} \\ & =2 \mathrm{ac} \cos \mathrm{B}\end{aligned}$
$$
=2 \mathrm{ac} \frac{\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2}{2 \mathrm{ca}}
$$....[By cosine rule $]$
$=c^2+a^2-b^2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.