Search any question & find its solution
Question:
Answered & Verified by Expert
In $\triangle \mathrm{ABC}$, with usual notations, if $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then the value of $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}$ is
Options:
Solution:
1247 Upvotes
Verified Answer
The correct answer is:
$\frac{51}{35}$
Let $\frac{\mathrm{b}+\mathrm{c}}{11}=\frac{\mathrm{c}+\mathrm{a}}{12}=\frac{\mathrm{a}+\mathrm{b}}{13}=\mathrm{k}$
$\therefore \quad b+c=11 k$ ...(i)
$c+a=12 k$ ...(ii)
and $a+b=13 k$ ...(iii)
From (i) $+($ ii) + (iii), $2(a+b+c)=36 k$
$\therefore \quad a+b+c=18 k$ ...(iv)
Now, (iv) - (i) gives, $a=7 k$
(iv) - (ii) gives, $b=6 \mathrm{k}$
(iv) - (iii) gives, $c=5 \mathrm{k}$
Now,
$\begin{aligned} \cos A & =\frac{b^2+c^2-a^2}{2 b c} \\ & =\frac{(6 k)^2+(5 k)^2-(7 k)^2}{2 \times(6 k) \times(5 k)} \\ & =\frac{36 k^2+25 k^2-49 k^2}{60 k^2} \\ & =\frac{12 k^2}{60 k^2} \\ & =\frac{1}{5}\end{aligned}$
$\begin{aligned} \cos \mathrm{B} & =\frac{\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2}{2 \mathrm{ca}} \\ & =\frac{(5 \mathrm{k})^2+(7 \mathrm{k})^2-(6 \mathrm{k})^2}{2 \times(5 \mathrm{k}) \times(7 \mathrm{k})} \\ & =\frac{25 \mathrm{k}^2+49 \mathrm{k}^2-36 \mathrm{k}^2}{70 \mathrm{k}^2} \\ & =\frac{38 \mathrm{k}^2}{70 \mathrm{k}^2} \\ & =\frac{19}{35}\end{aligned}$
$\begin{aligned} \cos C & =\frac{\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2}{2 \mathrm{ab}}=\frac{(7 \mathrm{k})^2+(6 \mathrm{k})^2-(5 \mathrm{k})^2}{2 \times(7 \mathrm{k}) \times(6 \mathrm{k})} \\ & =\frac{49 \mathrm{k}^2+36 \mathrm{k}^2-25 \mathrm{k}^2}{84 \mathrm{k}^2}=\frac{60 \mathrm{k}^2}{84 \mathrm{k}^2}=\frac{5}{7}\end{aligned}$
$\therefore \quad \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=\frac{1}{5}+\frac{19}{35}+\frac{5}{7}$
$\begin{aligned} & =\frac{7+19+25}{35} \\ & =\frac{51}{35}\end{aligned}$
$\therefore \quad b+c=11 k$ ...(i)
$c+a=12 k$ ...(ii)
and $a+b=13 k$ ...(iii)
From (i) $+($ ii) + (iii), $2(a+b+c)=36 k$
$\therefore \quad a+b+c=18 k$ ...(iv)
Now, (iv) - (i) gives, $a=7 k$
(iv) - (ii) gives, $b=6 \mathrm{k}$
(iv) - (iii) gives, $c=5 \mathrm{k}$
Now,
$\begin{aligned} \cos A & =\frac{b^2+c^2-a^2}{2 b c} \\ & =\frac{(6 k)^2+(5 k)^2-(7 k)^2}{2 \times(6 k) \times(5 k)} \\ & =\frac{36 k^2+25 k^2-49 k^2}{60 k^2} \\ & =\frac{12 k^2}{60 k^2} \\ & =\frac{1}{5}\end{aligned}$
$\begin{aligned} \cos \mathrm{B} & =\frac{\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2}{2 \mathrm{ca}} \\ & =\frac{(5 \mathrm{k})^2+(7 \mathrm{k})^2-(6 \mathrm{k})^2}{2 \times(5 \mathrm{k}) \times(7 \mathrm{k})} \\ & =\frac{25 \mathrm{k}^2+49 \mathrm{k}^2-36 \mathrm{k}^2}{70 \mathrm{k}^2} \\ & =\frac{38 \mathrm{k}^2}{70 \mathrm{k}^2} \\ & =\frac{19}{35}\end{aligned}$
$\begin{aligned} \cos C & =\frac{\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2}{2 \mathrm{ab}}=\frac{(7 \mathrm{k})^2+(6 \mathrm{k})^2-(5 \mathrm{k})^2}{2 \times(7 \mathrm{k}) \times(6 \mathrm{k})} \\ & =\frac{49 \mathrm{k}^2+36 \mathrm{k}^2-25 \mathrm{k}^2}{84 \mathrm{k}^2}=\frac{60 \mathrm{k}^2}{84 \mathrm{k}^2}=\frac{5}{7}\end{aligned}$
$\therefore \quad \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=\frac{1}{5}+\frac{19}{35}+\frac{5}{7}$
$\begin{aligned} & =\frac{7+19+25}{35} \\ & =\frac{51}{35}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.