Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 In an acute angled triangle, $\cot B \cot C+\cot A \cot C+\cot A \cot B$ is equal to
  Options:
            Solution: 
    2953 Upvotes
  
Verified Answer
 
 
The correct answer is:
$1$ 
 $\because$ In $\triangle A B C$
$A+B+C=180^{\circ}$
$\begin{array}{ll}\Rightarrow & A+B=180^{\circ}-C \\ \Rightarrow & \cot (A+B)=\cot \left(180^{\circ}-C\right) \\ \Rightarrow & \frac{\cot A \cot B-1}{\cot B+\cot A}=-\cot C \\ \Rightarrow & \cot A \cot B+\cot B \cot C+\cot C \cot A=1\end{array}$
 $A+B+C=180^{\circ}$
$\begin{array}{ll}\Rightarrow & A+B=180^{\circ}-C \\ \Rightarrow & \cot (A+B)=\cot \left(180^{\circ}-C\right) \\ \Rightarrow & \frac{\cot A \cot B-1}{\cot B+\cot A}=-\cot C \\ \Rightarrow & \cot A \cot B+\cot B \cot C+\cot C \cot A=1\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.