Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In an AP, the $m^{\text {th }}$ term $1 / n$ and $n^{\text {th }}$ term is $1 / m$. What is its $(m n)^{\text {th }}$ term?
MathematicsSequences and SeriesNDANDA 2009 (Phase 2)
Options:
  • A $1 /(\mathrm{mn})$
  • B $\mathrm{m} / \mathrm{n}$
  • C $n / m$
  • D 1
Solution:
1668 Upvotes Verified Answer
The correct answer is: 1
Let 'a' be the first term and 'd' be the common difference of an A.P
Now, Given $\mathrm{m}^{\text {th }}$ term $=\frac{1}{n}$
and $\mathrm{n}^{\text {th }}$ term $=\frac{1}{m}$
$\Rightarrow \mathrm{a}+(\mathrm{m}-1) \mathrm{d}=\frac{1}{n}$ and
$a+(n-1) d=\frac{1}{m}$
By subtracting the above two eqns, we get
$(\mathrm{m}-1-\mathrm{n}+1) \mathrm{d}=\frac{1}{n}-\frac{1}{m}$
$\Rightarrow(\mathrm{m}-\mathrm{n}) \mathrm{d}=\frac{m-n}{m n}$
$\Rightarrow d=\frac{1}{m n}$
Now, $(\mathrm{mn})^{\text {th }}$ term $=\mathrm{a}+(\mathrm{mn}-1) \mathrm{d}$
$=a+(m n-1) \frac{1}{m n}=a+1-\frac{1}{m n}$
Now, $a=\frac{1}{m}-(n-1) d$
$=\frac{1}{m}-(n-1) \frac{1}{m n}=\frac{1}{m}-\frac{n}{m n}+\frac{1}{m n}=\frac{1}{m n}$
$\therefore(\mathrm{mn})^{\text {th }}$ term $=\frac{1}{m n}+1-\frac{1}{m n}=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.