Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In an equilateral triangle, the in radius, circumradius and one of the ex-radii are in the ratio
MathematicsProperties of TrianglesBITSATBITSAT 2011
Options:
  • A \(2: 3: 5\)
  • B \(1: 2: 3\)
  • C \(3: 7: 9\)
  • D \(3: 7: 9\)
Solution:
2240 Upvotes Verified Answer
The correct answer is: \(1: 2: 3\)
We have \(\Delta=\frac{\sqrt{3}}{4} \mathrm{a}^2, \mathrm{~s}=\frac{3 \mathrm{a}}{2}\)
\(\therefore \quad r=\frac{\Delta}{\mathrm{s}}=\frac{\mathrm{a}}{2 \sqrt{3}}, \mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}=\frac{\mathrm{a}^3}{\sqrt{3} \mathrm{a}^2}=\frac{\mathrm{a}}{\sqrt{3}}\) and \(r_1=\frac{\Delta}{s-a}=\frac{\sqrt{3} / 4 a^2}{a / 2}=\frac{\sqrt{3}}{2} a\)
Hence, \(\mathrm{r}: \mathrm{R}: \mathrm{r}_1=\frac{\mathrm{a}}{2 \sqrt{3}}: \frac{\mathrm{a}}{\sqrt{3}}: \frac{\sqrt{3}}{2} \mathrm{a}=1: 2: 3\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.