Search any question & find its solution
Question:
Answered & Verified by Expert
In any Bohr orbit of hydrogen atom, the ratio of K.E to P.E of revolving electron at a distance ' $\mathrm{r}^{\prime}$ from the nucleus is
Options:
Solution:
1874 Upvotes
Verified Answer
The correct answer is:
$-\frac{1}{2}$
kinetic energy $\quad \mathrm{k}=\frac{1}{8 \pi \epsilon_{0}} \cdot \frac{\mathrm{e}^{2}}{\mathrm{r}}$
Potential energy $P=-\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \cdot \frac{\mathrm{e}^{2}}{\mathrm{r}}$
$\therefore \frac{\mathbf{k}}{\mathrm{p}}=-\frac{1}{2}$
Potential energy $P=-\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \cdot \frac{\mathrm{e}^{2}}{\mathrm{r}}$
$\therefore \frac{\mathbf{k}}{\mathrm{p}}=-\frac{1}{2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.