Search any question & find its solution
Question:
Answered & Verified by Expert
In any triangle $\mathrm{ABC}, r^2 \cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{B}}{2} \cot \frac{\mathrm{C}}{2}=$
Options:
Solution:
2448 Upvotes
Verified Answer
The correct answer is:
$\Delta$
Given $r^2 \cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$
We have $\cot \left(\frac{\mathrm{A}}{2}\right)=\left(\frac{s-a}{r}\right), \cot \left(\frac{\mathrm{B}}{2}\right)=\left(\frac{s-b}{r}\right)$ formula
Then, $r^2\left(\frac{s-a}{r}\right) \cdot\left(\frac{s-b}{r}\right) \cdot \cot \left(\frac{\mathrm{c}}{2}\right)$
Now, Apply $\cot \left(\frac{\mathrm{C}}{2}\right)=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{C})}{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}}$
So, $r^2 \frac{(s-a)(s-b)}{r^2} \times \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=\Delta$
Therefore, correct option is (a).
We have $\cot \left(\frac{\mathrm{A}}{2}\right)=\left(\frac{s-a}{r}\right), \cot \left(\frac{\mathrm{B}}{2}\right)=\left(\frac{s-b}{r}\right)$ formula
Then, $r^2\left(\frac{s-a}{r}\right) \cdot\left(\frac{s-b}{r}\right) \cdot \cot \left(\frac{\mathrm{c}}{2}\right)$
Now, Apply $\cot \left(\frac{\mathrm{C}}{2}\right)=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{C})}{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}}$
So, $r^2 \frac{(s-a)(s-b)}{r^2} \times \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=\Delta$
Therefore, correct option is (a).
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.