Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In many experimental set-ups, the source and screen are fixed at a distance say D and the lens is movable. Show that there are two positions for the lens for which an image is formed on the screen. Find the distance between these points and the ratio of the image sizes for these two points.
PhysicsRay Optics
Solution:
1706 Upvotes Verified Answer
The Principal of reversibility states that the position of object and image are interchangeable. Then, by the versibility of $u$ and $v$, as seen from the lens formula,
$$
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}
$$
It shows that there are two positions for which there shall be an image.
Consider the first position be when the lens is at $\mathrm{O}$.
As given that,
$$
\begin{aligned}
& &-\mathrm{u}+\mathrm{v} &=\mathrm{D} \\
\Rightarrow & & \mathrm{u} &=-(\mathrm{D}-\mathrm{v})
\end{aligned}
$$
By putting the value of $u$ in equation (i),
so, $\quad \frac{1}{(D-v)}+\frac{1}{v}=\frac{1}{f}$
or $\quad \frac{v+D-v}{(D-v)_v}=\frac{1}{f}$
$$
v^2-D v+D f=0
$$
To find the coordinate of this equation then using
$$
\begin{aligned}
&x=\left(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\right) \\
&v=\frac{D}{2} \pm \frac{\sqrt{D^2-4 D f}}{2}
\end{aligned}
$$
By putting the value of $v$ in equation (ii) then,
$$
u=-\left[D-\left[\frac{D}{2} \pm \frac{\sqrt{D^2-4 D f}}{2}\right]\right]
$$
So,
From(iii)
When, the position of object distance is
$$
\mathrm{u}_2=\frac{\mathrm{D}}{2}+\frac{\sqrt{\mathrm{D}^2-4 \mathrm{Df}}}{2}
$$
The image forms at
$$
v_2=\frac{D}{2}-\frac{\sqrt{D^2-4 D f}}{2}
$$
Similarly, when the position of the object distance is
$$
\mathrm{u}_1=\frac{\mathrm{D}}{2}-\frac{\sqrt{\mathrm{D}^2-4 \mathrm{Df}}}{2}
$$
The image forms at
$$
v_1=\frac{D}{2}+\frac{\sqrt{D^2-4 D f}}{2}
$$
The distance between the poles for these two positions of lens $(d)=v_1-v_2$
$$
\mathrm{d}=\left[\frac{\mathrm{D}}{2}+\frac{\sqrt{\mathrm{D}^2-4 \mathrm{Df}}}{2}\right] \cdot\left[\frac{\mathrm{D}}{2}-\frac{\sqrt{\mathrm{D}^2-4 \mathrm{Df}}}{2}\right]
$$
So, $\quad d=\sqrt{D^2-4 D f}$
In first case :
If $\mathrm{u}_2=\left[\frac{\mathrm{D}}{2}+\frac{\mathrm{d}}{2}\right]$, then the image is at
$$
\mathrm{v}_2=\left[\frac{\mathrm{D}}{2}-\frac{\mathrm{d}}{2}\right]
$$
So, the magnification $\mathrm{m}_2=\frac{\mathrm{v}_2}{\mathrm{u}_2}=\frac{\frac{\mathrm{D}}{2}-\frac{\mathrm{d}}{2}}{\frac{\mathrm{D}}{2}+\frac{\mathrm{d}}{2}}$
$$
m_2=\frac{D-d}{D+d}
$$
In second case :
If $\left[\mathrm{u}_1=\frac{\mathrm{D}-\mathrm{d}}{2}\right]$, then the image is
$$
\mathrm{v}_1=\left[\frac{\mathrm{D}+\mathrm{d}}{2}\right]
$$
$\therefore \quad$ The magnification $\left(m_1\right)$ is
$$
\begin{aligned}
\mathrm{m}_1 &=\left\lfloor\frac{\mathrm{v}_1}{\mathrm{u}_1}\right\rfloor=\frac{(\mathrm{D}+\mathrm{d}) \times 2}{2 \times(\mathrm{D}-\mathrm{d})} \\
\mathrm{m}_1 &=\frac{\mathrm{D}+\mathrm{d}}{\mathrm{D}-\mathrm{d}} \\
\frac{\mathrm{m}_1}{\mathrm{~m}_2} &=\left(\frac{\mathrm{D}+\mathrm{d}}{\mathrm{D}-\mathrm{d}}\right)^2
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.