Search any question & find its solution
Question:
Answered & Verified by Expert
In \(P\) and \(Q\) are square matrices such that \(P^{2006}=0\) and \(P Q=P+Q\), then \(\operatorname{det}(Q)\) will be
Options:
Solution:
1293 Upvotes
Verified Answer
The correct answer is:
0
\(\begin{array}{llll}
& P^{2006} =O \text { and } P Q=P+Q \\
\Rightarrow & P^{2006} Q =P^{2006}+Q \cdot P^{2005} \\
\Rightarrow & O =O+Q \cdot P^{2005} \\
\Rightarrow & P^{2005} \cdot Q =O \\
\Rightarrow & \operatorname{det} \cdot\left(P^{2005} \cdot Q\right) =O \\
\Rightarrow & \operatorname{det} P^{2005}(\operatorname{det} Q) =O \Rightarrow \operatorname{det} Q=O
\end{array}\)
& P^{2006} =O \text { and } P Q=P+Q \\
\Rightarrow & P^{2006} Q =P^{2006}+Q \cdot P^{2005} \\
\Rightarrow & O =O+Q \cdot P^{2005} \\
\Rightarrow & P^{2005} \cdot Q =O \\
\Rightarrow & \operatorname{det} \cdot\left(P^{2005} \cdot Q\right) =O \\
\Rightarrow & \operatorname{det} P^{2005}(\operatorname{det} Q) =O \Rightarrow \operatorname{det} Q=O
\end{array}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.