Search any question & find its solution
Question:
Answered & Verified by Expert
In the Auger process, an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom (This is called an Auger, electron). Assuming the nucleus to be massive, calculate the kinetic energy of an $n=4$ Auger electron emitted by Chromium by absorbing the energy from a $n=2$ to $n=1$ transition.
Solution:
2963 Upvotes
Verified Answer
The Chromium nucleus is massive, recoil momentum of the atom may be neglected and the entire energy of the transition may be considered transferred to the Auger electron. As there is a single valence electron in $\mathrm{Cr}$, the energy states may be thought of as given by the Bohr model. The energy of the nth state
$$
\mathrm{E}_{\mathrm{n}}=+\mathrm{Z}^2 \mathrm{R}\left(\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right)
$$
where $\mathrm{R}$ is the Rydberg constant for $\mathrm{n}_1=1, \mathrm{n}_2=2$ and $\mathrm{Z}=24$
The energy released in a transition from 2 to 1 is
$$
\Delta \mathrm{E}=\mathrm{Z}^2 \mathrm{R}\left(1-\frac{1}{4}\right)=\frac{3}{4} \mathrm{Z}^2 \mathrm{R} .
$$
The energy required to eject a $\mathrm{n}=4$ electron is
$$
\mathrm{E}_4=\mathrm{Z}^2 \mathrm{R} \frac{1}{16} .
$$
Thus, the kinetic energy of the Auger electron is
$$
\begin{aligned}
&=\mathrm{E}_{\mathrm{n}}-\mathrm{E}_4=\left(\frac{3}{4} \mathrm{Z}^2 \mathrm{R}-\frac{\mathrm{Z}^2 \mathrm{R}}{16}\right) \\
\mathrm{KE} &=\mathrm{Z}^2 \mathrm{R}\left(\frac{3}{4}-\frac{1}{16}\right)=\frac{1}{16} \mathrm{Z}^2 \mathrm{R} \\
&=\frac{1}{16} \times 24 \times 24 \times 13.6 \mathrm{eV}=5385.6 \mathrm{eV}
\end{aligned}
$$
$$
\mathrm{E}_{\mathrm{n}}=+\mathrm{Z}^2 \mathrm{R}\left(\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right)
$$
where $\mathrm{R}$ is the Rydberg constant for $\mathrm{n}_1=1, \mathrm{n}_2=2$ and $\mathrm{Z}=24$
The energy released in a transition from 2 to 1 is
$$
\Delta \mathrm{E}=\mathrm{Z}^2 \mathrm{R}\left(1-\frac{1}{4}\right)=\frac{3}{4} \mathrm{Z}^2 \mathrm{R} .
$$
The energy required to eject a $\mathrm{n}=4$ electron is
$$
\mathrm{E}_4=\mathrm{Z}^2 \mathrm{R} \frac{1}{16} .
$$
Thus, the kinetic energy of the Auger electron is
$$
\begin{aligned}
&=\mathrm{E}_{\mathrm{n}}-\mathrm{E}_4=\left(\frac{3}{4} \mathrm{Z}^2 \mathrm{R}-\frac{\mathrm{Z}^2 \mathrm{R}}{16}\right) \\
\mathrm{KE} &=\mathrm{Z}^2 \mathrm{R}\left(\frac{3}{4}-\frac{1}{16}\right)=\frac{1}{16} \mathrm{Z}^2 \mathrm{R} \\
&=\frac{1}{16} \times 24 \times 24 \times 13.6 \mathrm{eV}=5385.6 \mathrm{eV}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.