Search any question & find its solution
Question:
Answered & Verified by Expert
In the diode-based rectifier circuit given below, if $V_s=V_m \sin \omega t$ and the diode is ideal, then the average value of $V_L$ is

Options:

Solution:
1180 Upvotes
Verified Answer
The correct answer is:
$\frac{R_L}{\left(R_L+R_S\right)} \frac{V_m}{\pi}$
Given, AC voItage, $V_s=V_m \sin \omega t$ and $V_m=$ maximum value of voltage In the given circuit diode will only conduct current in forward bias, so output across $R_L$ will be

Average voltage, $V_{\mathrm{av}}=\frac{V_m}{\pi}$ average current $I_{\mathrm{av}}=\frac{V_{\mathrm{av}}}{R}$ Total resistance, $R=R_S+R_L$
$$
I_{\mathrm{av}}=\frac{V_m}{\left(R_S+R_L\right) \pi}
$$
Now, voltage across $R_L$,
$$
\begin{aligned}
& V_L=I_{\mathrm{av}} \cdot R_L \\
& V_L=\frac{R_L}{R_S+R_L} \cdot \frac{V_m}{\pi}
\end{aligned}
$$

Average voltage, $V_{\mathrm{av}}=\frac{V_m}{\pi}$ average current $I_{\mathrm{av}}=\frac{V_{\mathrm{av}}}{R}$ Total resistance, $R=R_S+R_L$
$$
I_{\mathrm{av}}=\frac{V_m}{\left(R_S+R_L\right) \pi}
$$
Now, voltage across $R_L$,
$$
\begin{aligned}
& V_L=I_{\mathrm{av}} \cdot R_L \\
& V_L=\frac{R_L}{R_S+R_L} \cdot \frac{V_m}{\pi}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.