Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In the expansion of $(1+\mathrm{x})^{43}$, if the coefficients of $(2 \mathrm{r}+1)^{\text {th }}$ and $(\mathrm{r}+2)^{\text {th }}$ terms are equal, then what is the value of $\mathrm{r}(\mathrm{r} \neq 1)$ ?
MathematicsBinomial TheoremNDANDA 2018 (Phase 1)
Options:
  • A 5
  • B 14
  • C 21
  • D 22
Solution:
1556 Upvotes Verified Answer
The correct answer is: 14
Given, in the expansion $\mathrm{g}(1+\mathrm{x})^{43}$, coefficients of $(2 \mathrm{r}+1)^{\text {th }}$ term and $(\mathrm{r}+2)^{\mathrm{th}}$ term are equal.
Coefficient of $(2 \mathrm{r}+1)^{\text {th }}$ term $=\mathrm{n}_{\mathrm{C}_{2 \mathrm{r}}}$
Coefficient of $(\mathrm{r}+2)^{\text {th }}$ term $=\mathrm{n}_{\mathrm{C}_{\mathrm{r}+1}}$
$\mathrm{n}_{\mathrm{C}_{2 \mathrm{r}}}=\mathrm{n}_{\mathrm{C}_{\mathrm{r}+1}}$
$\Rightarrow 43_{\mathrm{C}_{2 \mathrm{r}}}=43_{\mathrm{C}_{\mathrm{r}+1}}$
$(\because \mathrm{n}=43)$
$\Rightarrow 2 \mathrm{r}+\mathrm{r}+1=43$
$\Rightarrow 3 r+1=43$
$\Rightarrow 3 \mathrm{r}+42 \Rightarrow \mathrm{r}=14$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.