Search any question & find its solution
Question:
Answered & Verified by Expert
In the expansion of $\frac{a+b x}{e^{x}}$, the coefficient of $x^{r}$ is
Options:
Solution:
1211 Upvotes
Verified Answer
The correct answer is:
$(-1)^{r} \frac{a-b r}{r !}$
$\begin{array}{l}
(a+b x) e^{-x} \\
=(a+b x) \\
\quad\left\{1-\frac{x}{1 !}+\frac{x^{2}}{2 !}-\frac{x^{3}}{3 !}+\ldots+(-1)^{n} \frac{x^{n}}{n !}+\ldots\right\}
\end{array}$
$\therefore$ The coefficient of $x^{\mathrm{r}}=\mathrm{a}$.
$\frac{(-1)^{\mathrm{r}}}{\mathrm{r} !}+\mathrm{b} \frac{(-1)^{\mathrm{r}-1}}{(\mathrm{r}-1) !}=\frac{(-1)^{\mathrm{r}}}{\mathrm{r} !}(\mathrm{a}-\mathrm{br})$
(a+b x) e^{-x} \\
=(a+b x) \\
\quad\left\{1-\frac{x}{1 !}+\frac{x^{2}}{2 !}-\frac{x^{3}}{3 !}+\ldots+(-1)^{n} \frac{x^{n}}{n !}+\ldots\right\}
\end{array}$
$\therefore$ The coefficient of $x^{\mathrm{r}}=\mathrm{a}$.
$\frac{(-1)^{\mathrm{r}}}{\mathrm{r} !}+\mathrm{b} \frac{(-1)^{\mathrm{r}-1}}{(\mathrm{r}-1) !}=\frac{(-1)^{\mathrm{r}}}{\mathrm{r} !}(\mathrm{a}-\mathrm{br})$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.