Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In the figure shown, the magnetic field induction as the point $\mathrm{O}$ will be
PhysicsMagnetic Effects of CurrentVITEEEVITEEE 2012
Options:
  • A $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}$
  • B $\left(\frac{\mu_{0}}{4 \pi}\right)\left(\frac{i}{r}\right)(\pi+2)$
  • C $\left(\frac{\mu_{0}}{4 \pi}\right)\left(\frac{\mathrm{i}}{\mathrm{r}}\right)(\pi+1)$
  • D $\frac{\mu_{0}}{4 \pi r} \frac{i}{r}(\pi-2)$
Solution:
1634 Upvotes Verified Answer
The correct answer is: $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}$
Field due to a straight wire of infinite length is $\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{r}}$ ifthe point is on a line perpendicular to its length while at the centre of a semicurcular coil is $\frac{\mu_{0} \pi i}{4 \pi r}$


$$
\begin{array}{l}
\therefore \mathrm{B}=\mathrm{B}_{\mathrm{a}}+\mathrm{B}_{\mathrm{b}}+\mathrm{B}_{\mathrm{c}} \\
=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{i}}{\mathrm{r}}+\frac{\mu_{0}}{4 \pi} \frac{\pi \mathrm{i}}{\mathrm{r}}+\frac{\mu_{0}}{4 \pi \mathrm{r}} \frac{\mathrm{i}}{\mathrm{r}} \\
=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{i}}{\mathrm{r}}(\pi+2) \text { out of the phase }
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.