Search any question & find its solution
Question:
Answered & Verified by Expert
In the figure, the value of $Q$ so that the electrostatic potential energy of the system becomes zero is

Options:

Solution:
2592 Upvotes
Verified Answer
The correct answer is:
$\frac{2 q}{2-\sqrt{2}}$
We have
$\mathrm{U}_{\text {System }}=\mathrm{K}\left[\frac{-\mathrm{q} \cdot \mathrm{q}}{\mathrm{x}}+\frac{\mathrm{qQ}}{\mathrm{x}}+\frac{-\mathrm{qQ}}{\sqrt{2} \mathrm{x}}\right]$
$\begin{aligned} & \Rightarrow 0=-q^2+q Q-\frac{q Q}{\sqrt{2}} \\ & \Rightarrow 0=-q+Q-\frac{Q}{\sqrt{2}} \\ & \Rightarrow Q\left(1-\frac{1}{\sqrt{2}}\right)=q \\ & \Rightarrow Q=\frac{\sqrt{2} q}{\sqrt{2}-1} \\ & \Rightarrow Q=\frac{2 q}{2-\sqrt{2}}\end{aligned}$
$\mathrm{U}_{\text {System }}=\mathrm{K}\left[\frac{-\mathrm{q} \cdot \mathrm{q}}{\mathrm{x}}+\frac{\mathrm{qQ}}{\mathrm{x}}+\frac{-\mathrm{qQ}}{\sqrt{2} \mathrm{x}}\right]$
$\begin{aligned} & \Rightarrow 0=-q^2+q Q-\frac{q Q}{\sqrt{2}} \\ & \Rightarrow 0=-q+Q-\frac{Q}{\sqrt{2}} \\ & \Rightarrow Q\left(1-\frac{1}{\sqrt{2}}\right)=q \\ & \Rightarrow Q=\frac{\sqrt{2} q}{\sqrt{2}-1} \\ & \Rightarrow Q=\frac{2 q}{2-\sqrt{2}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.