Search any question & find its solution
Question:
Answered & Verified by Expert
In the given part of a circuit, the potential at point $B$ is zero. Then the potentials at $\mathrm{A}$ and $\mathrm{C}$ respectively are

Options:

Solution:
1425 Upvotes
Verified Answer
The correct answer is:
$+1.5 \mathrm{~V},-0.5 \mathrm{~V}$
From the given circuit
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=1 \times 1.5=1.5 \mathrm{~V}$
Here, $V_B=0$
So, $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{~V}$
Consider a point $\mathrm{p}$ between $\mathrm{B}$ and $\mathrm{C}$
$\begin{aligned}
& V_B-V_p=2.5 \times 1=2.5 \mathrm{~V} \\
& V_C-V_p=V_C-(-2.5) \\
& \Rightarrow V_C+2.5=2 \\
& \Rightarrow V_C=2-2.5 \\
& \Rightarrow V_C=-0.5 \mathrm{~V}
\end{aligned}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=1 \times 1.5=1.5 \mathrm{~V}$
Here, $V_B=0$
So, $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{~V}$
Consider a point $\mathrm{p}$ between $\mathrm{B}$ and $\mathrm{C}$
$\begin{aligned}
& V_B-V_p=2.5 \times 1=2.5 \mathrm{~V} \\
& V_C-V_p=V_C-(-2.5) \\
& \Rightarrow V_C+2.5=2 \\
& \Rightarrow V_C=2-2.5 \\
& \Rightarrow V_C=-0.5 \mathrm{~V}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.