Search any question & find its solution
Question:
Answered & Verified by Expert
In the reaction
\( \mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 \times \mathrm{kJ} \) and \( \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y \mathrm{~kJ} \)
heat of formation of \( \mathrm{SO}_{2} \) is
Options:
\( \mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 \times \mathrm{kJ} \) and \( \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y \mathrm{~kJ} \)
heat of formation of \( \mathrm{SO}_{2} \) is
Solution:
2947 Upvotes
Verified Answer
The correct answer is:
\( 2 x-y \)
Given
\[
\begin{array}{l}
S(s)+\frac{3}{2} O_{2}(g) \rightarrow S O_{3}(g) ; \Delta H_{1}=2 x k J \rightarrow(1) \\
S O_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow S O_{3}(g) ; \Delta H_{2}=y k J \rightarrow(2)
\end{array}
\]
For reaction
\[
S(s)+O_{2}(g) \rightarrow S O_{2}(g) ; \Delta H_{3}=? k J
\]
Inverting Eq. (2), we get
\[
\mathrm{SO}_{3}(g) \rightarrow \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) ; \Delta \mathrm{H}_{4}=-y k J \rightarrow(3)
\]
Adding Eq. (1) and (3), we get
\[
S(s)+O_{2}(g) \rightarrow S O_{2}(g) ; \Delta H_{3}=(2 x-y) k J
\]
\[
\begin{array}{l}
S(s)+\frac{3}{2} O_{2}(g) \rightarrow S O_{3}(g) ; \Delta H_{1}=2 x k J \rightarrow(1) \\
S O_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow S O_{3}(g) ; \Delta H_{2}=y k J \rightarrow(2)
\end{array}
\]
For reaction
\[
S(s)+O_{2}(g) \rightarrow S O_{2}(g) ; \Delta H_{3}=? k J
\]
Inverting Eq. (2), we get
\[
\mathrm{SO}_{3}(g) \rightarrow \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) ; \Delta \mathrm{H}_{4}=-y k J \rightarrow(3)
\]
Adding Eq. (1) and (3), we get
\[
S(s)+O_{2}(g) \rightarrow S O_{2}(g) ; \Delta H_{3}=(2 x-y) k J
\]
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.