Search any question & find its solution
Question:
Answered & Verified by Expert
In the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$, the rate of disappearance of $\mathrm{H}_{2}$ is $0 \cdot 02 \mathrm{M} / \mathrm{s}$. The rate of appearance of $\mathrm{NH}_{3}$ is
Options:
Solution:
1442 Upvotes
Verified Answer
The correct answer is:
$0 \cdot 0133 \mathrm{M} / \mathrm{s}$
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
Rate of reaction $=-\frac{\mathrm{d}\left(\mathrm{N}_{2}\right)}{\mathrm{dt}}=-\frac{1}{3} \frac{\mathrm{d}\left(\mathrm{H}_{2}\right)}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{d}\left(\mathrm{NH}_{3}\right)}{\mathrm{dt}}$
From rate expression,
$\frac{\mathrm{d}\left(\mathrm{NH}_{2}\right)}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{d}\left(\mathrm{H}_{2}\right)}{\mathrm{d} \mathrm{t}}=\frac{2}{3} \times 0.02=0.0133 \mathrm{M} / \mathrm{s}$
Rate of reaction $=-\frac{\mathrm{d}\left(\mathrm{N}_{2}\right)}{\mathrm{dt}}=-\frac{1}{3} \frac{\mathrm{d}\left(\mathrm{H}_{2}\right)}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{d}\left(\mathrm{NH}_{3}\right)}{\mathrm{dt}}$
From rate expression,
$\frac{\mathrm{d}\left(\mathrm{NH}_{2}\right)}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{d}\left(\mathrm{H}_{2}\right)}{\mathrm{d} \mathrm{t}}=\frac{2}{3} \times 0.02=0.0133 \mathrm{M} / \mathrm{s}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.