Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In triangle ABC, a+b+cBC+AB+a+b+cAC+AB=3 then tanC8=
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2021 (19 Aug Shift 2)
Options:
  • A 6+3+22
  • B 632+2
  • C 63+22
  • D 6+32+2
Solution:
1236 Upvotes Verified Answer
The correct answer is: 63+22

Given, a+b+cBC+AB+a+b+cAC+AB=3

Here, BC=a, AC=b, AB=c.

Then, a+b+ca+c+a+b+cb+c=3

a+ca+c+ba+c+b+cb+c+ab+c=3

1+ba+c+1+ab+c=3

ba+c+ab+c=1

b2+bc+a2+ac=ab+ac+bc+c2

b2+a2-c2ab=1

b2+a2-c22ab=12

Now from Cosine rule, we know b2+a2-c22ab=cosC

cosC=12

C=π3

Now, tanC8=tanπ3×8=tanπ24

Let π24=xπ6=4x

We know that tanπ6=13

tan4x=13

2tan2x1-tan22x=13

23tan2x=1-tan22x

tan22x+23tan2x-1=0

tan2x=-23+12+42=2-3

2tanx1-tan2x=2-3

2-3tan2x+2tanx-2-3=0

tanx=-2±4+42-32-322-3=-2±28-4322-3

tanx=-1±22-32-3

tanx=-1±23-12-3

Considering tanx=-1+23-12-3

tanx=6-2-12+3

tanx=6+2-2-3

Hence, tanC8=tanπ24=6+2-2-3.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.