Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In triangle $\mathrm{ABC}$, if $\frac{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}}{\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}}=2$ then the
triangle is
MathematicsInverse Trigonometric FunctionsNDANDA 2017 (Phase 2)
Options:
  • A right-angled
  • B equilateral
  • C isosceles
  • D obtuse-angled
Solution:
1973 Upvotes Verified Answer
The correct answer is: right-angled
Given, $\frac{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C}{\cos ^{2} A+\cos ^{2} B+\cos ^{2} C}=2$.
Let us take $\mathrm{A}=30^{\circ}, \mathrm{B}=60^{\circ}, \mathrm{C}=90^{\circ}$
$\frac{\sin ^{2} 30^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ}}{\cos ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}}$
$=\frac{\frac{1}{4}+\frac{3}{4}+1}{\frac{3}{4}+\frac{1}{4}+0}=\frac{1+1}{1}=\frac{2}{1}=2$
So, the given triangle is right-angled triangle.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.