Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In Young's double slit experiment, one of the slit is wider than other, so that the amplitude of the light from one slit is double of that from other slit. If $I_m$ be the maximum intensity, the resultant intensity I when they interfere at phase difference $\phi$ is given by
PhysicsWave OpticsJEE MainJEE Main 2012 (Offline)
Options:
  • A
    $\frac{I_m}{9}(4+5 \cos \phi)$
  • B
    $\frac{\mathrm{l}_{\mathrm{m}}}{3}\left(1+2 \cos ^2 \frac{\phi}{2}\right)$
  • C
    $\frac{I_m}{5}\left(1+4 \cos ^2 \frac{\phi}{2}\right)$
  • D
    $\frac{I_m}{9}\left(1+8 \cos ^2 \frac{\phi}{2}\right)$
Solution:
2015 Upvotes Verified Answer
The correct answer is:
$\frac{I_m}{9}\left(1+8 \cos ^2 \frac{\phi}{2}\right)$
Let $A_1=A_0, A_2=2 A_0$
If amplitude of resultant wave is $A$ then
$\mathrm{A}^2=\mathrm{A}_1^2+\mathrm{A}_2^2+2 \mathrm{~A}_1 \mathrm{A}_2 \cos \phi$
For maximum intensity,
$\mathrm{A}_{\max }^2=\mathrm{A}_1^2+\mathrm{A}_2^2+2 \mathrm{~A}_1 \mathrm{A}_2$
$\therefore\frac{A^2}{A_{\max }^2}=\frac{A_1^2+A_2^2+2 A_1 A_2 \cos \phi}{A_1^2+A_2^2+2 A_1 A_2}$
$=\frac{A_0^2+4 A_0^2+2\left(A_0\right)\left(2 A_0\right) \cos \phi}{A_0^2+4 A_0^2+2\left(A_0\right)\left(2 A_0\right)}$
$\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{m}}}=\frac{5+4 \cos \phi}{9}=\frac{1+8 \cos ^2(\phi / 2)}{9}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.