Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\(\int \frac{d x}{x+\sqrt{x-1}}=\)
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2019 (20 Apr Shift 1)
Options:
  • A \(\log _e|x+\sqrt{x-1}|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
  • B \(\frac{1}{\sqrt{3}} \log _e|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
  • C \(\frac{2}{\sqrt{3}} \log _6|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
  • D \(\log _6|x+\sqrt{x-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
Solution:
2860 Upvotes Verified Answer
The correct answer is: \(\log _6|x+\sqrt{x-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
Given integral, \(I=\int \frac{d x}{x+\sqrt{x-1}}\)
put \(x-1=t^2 \Rightarrow d x=2 t d t\)
then \(I=\int \frac{2 t}{\left(t^2+1\right)+t} d t=\int \frac{(2 t+1)-1}{t^2+t+1} d t\)
\(\begin{aligned}
& =\int \frac{2 t+1}{t^2+t+1} d t-\int \frac{d t}{t^2+t+1} \\
& =\log _e\left|t^2+t+1\right|-\int \frac{d t}{\left(t+\frac{1}{2}\right)^2+\frac{3}{4}} \\
& =\log _e\left|t^2+t+1\right|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)+c \\
& =\log _e\left|t^2+t+1\right|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)+c
\end{aligned}\)
On putting value of \(t=\sqrt{x-1}\), we get
\(I=\log _e|x+\sqrt{x-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
Hence, option (4) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.