Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\( \int x^{3} \sin 3 x d x= \)
MathematicsIndefinite IntegrationKCETKCET 2019
Options:
  • A \( \frac{x^{3} \cos 3 x}{3}+\frac{x^{2} \sin 3 x}{3}-\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C \)
  • B \( -\frac{x^{3} \cos 3 x}{3}+\frac{x^{2} \sin 3 x}{3}-\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C \)
  • C \( -\frac{x^{3} \cos 3 x}{3}-\frac{x^{2} \sin 3 x}{3}+\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C \)
  • D \( -\frac{x^{3} \cos 3 x}{3}+\frac{x^{2} \sin 3 x}{3}+\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C \)
Solution:
2608 Upvotes Verified Answer
The correct answer is: \( -\frac{x^{3} \cos 3 x}{3}+\frac{x^{2} \sin 3 x}{3}+\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C \)
(D)
\[
\begin{array}{l}
\int x^{3} \sin 3 x d x=x^{3}\left[\frac{-\cos 3 x}{3}\right]+3 x^{2}\left[\frac{-\sin 3 x}{9}\right]+6 x\left[\frac{\cos 3 x}{27}\right]-6\left[\frac{\sin 3 x}{81}\right]+C \\
=-\frac{x^{3} \cos 3 x}{3}+\frac{x^{2} \sin 3 x}{3}+\frac{2 x \cos 3 x}{9}-\frac{2 \sin 3 x}{27}+C
\end{array}
\]

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.