Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\(\int x\left(\tan ^2 x\right) d x=\)
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2020 (21 Sep Shift 2)
Options:
  • A \(x \tan (x)-\log _e(\sec x)-\frac{x^2}{2}+c\)
  • B \(x \tan (x)+\log _e(\sec x)-\frac{x^2}{2}+c\)
  • C \(x \tan (x)-\log _e(\sec x)+\frac{x^2}{2}+c\)
  • D \(x \tan (x)+\log _e(\sec x)+\frac{x^2}{2}+c\)
Solution:
2045 Upvotes Verified Answer
The correct answer is: \(x \tan (x)-\log _e(\sec x)-\frac{x^2}{2}+c\)
\(\begin{aligned}
I & =\int x\left(\tan ^2 x\right) d x=x \int\left(\sec ^2 x-1\right) d x -\int\left(1 \int\left(\sec ^2 x-1\right) d x\right) d x \\
& =x(\tan x-x)-\int(\tan x-x) d x \\
& =x \tan x-x^2-\log _e(\sec x)+\frac{x^2}{2}+C \\
& =x \tan x-\log _e(\sec x)-\frac{x^2}{2}+C
\end{aligned}\)
Hence, option (a) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.