Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\( \int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \cdot \sin ^{2} x+b^{2} \cdot \cos ^{2} x} d x \) is equal to
MathematicsMathematical ReasoningKCETKCET 2017
Options:
  • A \( \frac{\Pi a}{4 b} \)
  • B \( \frac{\Pi a}{2 b} \)
  • C \( \frac{\Pi b}{4 a} \)
  • D \( \frac{\Pi}{2 a b} \)
Solution:
2934 Upvotes Verified Answer
The correct answer is: \( \frac{\Pi}{2 a b} \)
\[
\begin{array}{l}
\text { Given that, } \int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x \\
=\int_{0}^{\pi / 2} \frac{1}{\frac{\cos ^{2} x}{\sin ^{2} x}+b^{2} \frac{\cos ^{2} x}{\cos ^{2} x} d x} \\
=\int_{0}^{\pi / 2} \frac{\sec ^{2} x}{a^{2} \tan ^{2} x+b^{2}} d x
\end{array}
\]
Let \( \tan \mathrm{x}=t \) then, \( d t=\sec ^{2} x d x \) and limits change from \( 0 \rightarrow 0, \frac{\Pi}{2} \rightarrow \infty \)
\[
\begin{array}{l}
\frac{1}{a^{2}} \int_{0}^{\infty} \frac{d t}{1+\left(\frac{b}{a}\right)^{2} t^{2}} \\
=\frac{1}{a^{2}} \cdot \frac{1}{(b / a)} \cdot\left(\tan ^{-1}\left(\frac{t}{b / a}\right)\right) \\
=\frac{1}{a b}\left(\frac{\Pi}{2}-0\right)=\frac{\Pi}{2 a b}
\end{array}
\]

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.