Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\(\int_0^{\frac{\pi}{2}} \frac{\sin ^2 x}{\sin x+\cos x} d x=\)
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2019 (23 Apr Shift 1)
Options:
  • A \(\frac{3}{\sqrt{2}} \log (\sqrt{2}+1)^{\frac{1}{2}}\)
  • B \(\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)\)
  • C \(\frac{\sqrt{2}}{3} \log (\sqrt{3}+1)\)
  • D \(\frac{2}{\sqrt{3}} \log (\sqrt{2}-1)\)
Solution:
2652 Upvotes Verified Answer
The correct answer is: \(\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)\)
Let \(I=\int_0^{\frac{\pi}{2}} \frac{\sin ^2 x}{\sin x+\cos x} d x\) ...(i)
On applying property \(\int_0^a f(x) d x=\int_0^a f(a-x) d x\), we get,
\(I=\int_0^{\frac{\pi}{2}} \frac{\cos ^2 x}{\cos x+\sin x} d x\) ...(ii)
On adding Eqs. (i) and (ii), we get
\(\begin{aligned}
2 I & =\int_0^{\frac{\pi}{2}} \frac{\sin ^2 x+\cos ^2 x}{\sin x+\cos x} d x \\
& =\int_0^{\frac{\pi}{2}} \frac{d x}{\sin x+\cos x} \\
& =\frac{1}{\sqrt{2}} \int_0^{\frac{\pi}{2}} \operatorname{cosec}\left(\frac{\pi}{4}+x\right) d x \\
& =\frac{1}{\sqrt{2}}\left[\log \left|\operatorname{cosec}\left(\frac{\pi}{4}+x\right)-\cot \left(\frac{\pi}{4}+x\right)\right|\right]_0^{\pi / 2} \\
\Rightarrow I & =\frac{1}{2 \sqrt{2}}[\log (\sqrt{2}+1)-\log (\sqrt{2}-1)] \\
& =\frac{1}{2 \sqrt{2}}[2 \log (\sqrt{2}+1)]=\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)
\end{aligned}\)
Hence, option (b) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.