Search any question & find its solution
Question:
Answered & Verified by Expert
Integrate the function
$\frac{1}{\sqrt{8+3 x-x^2}}$
$\frac{1}{\sqrt{8+3 x-x^2}}$
Solution:
1118 Upvotes
Verified Answer
$\int \frac{d x}{\sqrt{8+3 x-x^2}}=\int \frac{d x}{\sqrt{8-\left(x^2-3 x\right)}}$
$=\int \frac{d x}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}=\sin ^1\left(\frac{2 x-3}{\sqrt{41}}\right)+C$
$=\int \frac{d x}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}=\sin ^1\left(\frac{2 x-3}{\sqrt{41}}\right)+C$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.