Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\(\int\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] d x=\)
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2020 (18 Sep Shift 2)
Options:
  • A \(x \log x+c\)
  • B \(-x \log x+c\)
  • C \(\frac{\log x}{x}+c\)
  • D \(\frac{x}{\log x}+c\)
Solution:
2207 Upvotes Verified Answer
The correct answer is: \(\frac{x}{\log x}+c\)
\(\int\left(\frac{1}{\log x}-\frac{1}{(\log x)^2}\right) d x\)
Put, \(\log x=t\)
\(\begin{array}{l}
x=e^t \\
d x=e^t d t \\
\int\left(\frac{1}{t}+\frac{-1}{t^2}\right) e^t d t
\end{array}\)
We have,
\(\begin{aligned}
\int e^x\left(f(x)+f^{\prime}(x) d x\right. & \left.=e^x \cdot f(x)+C\right) \\
& =e^t \cdot \frac{1}{t}+c=\frac{e^{\log x}}{\log x}+c=\frac{x}{\log x}+c
\end{aligned}\)
Hence, option (d) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.