Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Ionisation energy of $\mathrm{He}^{+}$is $19.6 \times 10^{-18} \mathrm{~J}$ atom $^{-1}$. The energy of the first stationary state $(n=1)$ of $\mathrm{Li}^{2+}$ is
ChemistryStructure of AtomVITEEEVITEEE 2018
Options:
  • A $4.41 \times 10^{-16} \mathrm{~J}$ atom $^{-1}$
  • B $-4.41 \times 10^{-17} \mathrm{~J}$ atom $^{-1}$
  • C $-2.2 \times 10^{-15} \mathrm{~J}$ atom $^{-1}$
  • D $8.82 \times 10^{-17} \mathrm{~J}$ atom $^{-1}$
Solution:
2561 Upvotes Verified Answer
The correct answer is: $-4.41 \times 10^{-17} \mathrm{~J}$ atom $^{-1}$
I. $E=\frac{Z^{2}}{n^{2}} \times 13.6 \mathrm{eV}....(i)$
or $\frac{I_{1}}{I_{2}}=\frac{Z_{1}^{2}}{n_{1}^{2}} \times \frac{n_{2}^{2}}{Z_{2}^{2}}....(ii)$
Given $I_{1}=-19.6 \times 10^{-18}, Z_{1}=2$, $n_{1}=1, Z_{2}=3$ and $n_{2}=1$
Substituting these values in equation (ii).
$$
-\frac{19.6 \times 10^{-18}}{\mathrm{I}_{2}}=\frac{4}{1} \times \frac{1}{9}
$$
or $I_{2}=-19.6 \times 10^{-18} \times \frac{9}{4}$ $=-4.41 \times 10^{-17} \mathrm{~J} /$ atom

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.