Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
\((-i+\sqrt{3})^{300}+(-i-\sqrt{3})^{300}=\)
MathematicsComplex NumberAP EAMCETAP EAMCET 2020 (21 Sep Shift 1)
Options:
  • A \(2^{300}\)
  • B \(2^{301}\)
  • C \(2^{100}\)
  • D \(-2^{300}\)
Solution:
1195 Upvotes Verified Answer
The correct answer is: \(2^{301}\)
\(\begin{aligned}
&(-i+\sqrt{3})^{300}+(-i-\sqrt{3})^{300}=(i-\sqrt{3})^{300} +(-i-\sqrt{3})^{300} \\
&= i^{300}(1+i \sqrt{3})^{300}+i^{300}(-1+i \sqrt{3})^{300} \\
&=\left(-2 w^2\right)^{300}+(2 w)^{300} \quad\{\text {where } w \text { is cube root of unity}\} \\
&= 2^{300}\left[\left(w^2\right)^{300}+w^{300}\right]=2^{300} \times 2=2^{301}
\end{aligned}\)
Hence, option (b) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.