Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\sum_{k=1}^5 \frac{1^3+2^3+\ldots+k^3}{1+3+5+\ldots+(2 k-1)}$ is equal to
MathematicsSequences and SeriesTS EAMCETTS EAMCET 2004
Options:
  • A $22.5$
  • B $24.5$
  • C $28.5$
  • D $32.5$
Solution:
2285 Upvotes Verified Answer
The correct answer is: $22.5$
$\begin{aligned} & \sum_{k=1}^5 \frac{1^3+2^3+\ldots+k^3}{1+3+5+\ldots .+(2 k-1)} \\ & =\sum_{k=1}^5 \frac{\left(\frac{k(k+1)}{2}\right)^2}{k^2} \\ & \qquad\left[\begin{array}{l}\because n^3=\left(\frac{n(n+1)}{2}\right)^2 \\ \text { and } 1+3+5 \ldots+(2 K-1)=K^2\end{array}\right] \\ & =\sum_{k=1}^5 \frac{(k+1)^2}{4}=\frac{2^2+3^2+4^2+5^2+6^2}{4} \\ & =\frac{4+9+16+25+36}{4}=\frac{90}{4}=22.5\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.