Search any question & find its solution
Question:
Answered & Verified by Expert
$\sum_{k=1}^{\infty} \frac{1}{k !}\left(\sum_{n=1}^k 2^{n-1}\right)$ is equal to
Options:
Solution:
1833 Upvotes
Verified Answer
The correct answer is:
$e^2-e$
$\begin{aligned} & \sum_{k=1}^{\infty} \frac{1}{k !}\left(\sum_{n=1}^k 2^{n-1}\right) \\ &=\sum_{k=1}^{\infty} \frac{1}{k !}\left[1\left(2^k-1\right)\right]\end{aligned}$
$\begin{aligned} & =\sum_{k=1}^{\infty} \frac{2^k-1}{k !} \\ & =\sum_{k=1}^{\infty} \frac{2^k}{k !}-\sum_{k=1}^{\infty} \frac{1}{k !} \\ & =e^2-1-(e-1) \\ & =e^2-e\end{aligned}$
$\begin{aligned} & =\sum_{k=1}^{\infty} \frac{2^k-1}{k !} \\ & =\sum_{k=1}^{\infty} \frac{2^k}{k !}-\sum_{k=1}^{\infty} \frac{1}{k !} \\ & =e^2-1-(e-1) \\ & =e^2-e\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.