Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\sum_{k=1}^{\infty} \frac{1}{k !}\left(\sum_{n=1}^k 2^{n-1}\right)$ is equal to
MathematicsSequences and SeriesTS EAMCETTS EAMCET 2008
Options:
  • A $e$
  • B $e^2+e$
  • C $e^2$
  • D $e^2-e$
Solution:
1833 Upvotes Verified Answer
The correct answer is: $e^2-e$
$\begin{aligned} & \sum_{k=1}^{\infty} \frac{1}{k !}\left(\sum_{n=1}^k 2^{n-1}\right) \\ &=\sum_{k=1}^{\infty} \frac{1}{k !}\left[1\left(2^k-1\right)\right]\end{aligned}$
$\begin{aligned} & =\sum_{k=1}^{\infty} \frac{2^k-1}{k !} \\ & =\sum_{k=1}^{\infty} \frac{2^k}{k !}-\sum_{k=1}^{\infty} \frac{1}{k !} \\ & =e^2-1-(e-1) \\ & =e^2-e\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.