Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\alpha_{1}, \alpha_{2}$ and $\beta_{1}, \beta_{2}$ be the roots of $a x^{2}+b x+c$ $=0$ and $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ respectively. If the system of equations $\alpha_{1} \mathrm{y}+\alpha_{2} \mathrm{z}=0$ and $\beta_{1} \mathrm{y}+\beta_{2} \mathrm{z}=0$ has a non-trivial solution, then
MathematicsDeterminantsJEE Main
Options:
  • A $\frac{b^{2}}{q^{2}}=\frac{a c}{p r}$
  • B $\frac{\mathrm{c}^{2}}{\mathrm{r}^{2}}=\frac{\mathrm{ab}}{\mathrm{pq}}$
  • C $\frac{a^{2}}{p^{2}}=\frac{b c}{q r}$
  • D None of these
Solution:
1407 Upvotes Verified Answer
The correct answer is: $\frac{b^{2}}{q^{2}}=\frac{a c}{p r}$
Since $\alpha_{1}, \alpha_{2}$ and $\beta_{1}, \beta_{2}$ are the roots of ax $^{2}$ $+b x+c=0$ and $p x^{2}+q x+r=0$ respectively

therefore

$$

\alpha_{1}+\alpha_{2}=\frac{-b}{a}, \alpha_{1} \alpha_{2}=\frac{c}{a}

$$

and $\beta_{1}+\beta_{2}=\frac{-q}{p}, \beta_{1} \beta_{2}=\frac{r}{p}$

Since the given system of equation has a non-trivial solution

$$

\therefore\left|\begin{array}{ll}

\alpha_{1} & \alpha_{2} \\

\beta_{1} & \beta_{2}

\end{array}\right|=0 \text { i.e. } \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}=0

$$

or $\quad \frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha_{2}}{\beta_{2}}=\frac{\alpha_{1}+\alpha_{2}}{\beta_{1}+\beta_{2}}=\sqrt{\frac{\alpha_{1} \alpha_{2}}{\beta_{1} \beta_{2}}}$

$\Rightarrow \frac{\mathrm{pb}}{\mathrm{qa}}=\sqrt{\frac{\mathrm{pc}}{\mathrm{ra}}} \Rightarrow \frac{\mathrm{b}^{2}}{\mathrm{q}^{2}}=\frac{\mathrm{ac}}{\mathrm{pr}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.