Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\left(1+x+x^{2}\right)^{2014}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots . .+a_{s+28} x^{4028}$ and let
$$
\begin{array}{l}
A=a_{0}-a_{3}+a_{6}-\ldots \ldots+a_{4026} \\
B=a_{1}-a_{4}+a_{7}-\ldots \ldots .-a_{4027} \\
C=a_{2}-a_{5}+a_{8}-\ldots \ldots .+a_{4028}
\end{array}
$$
Then
MathematicsBinomial TheoremKVPYKVPY 2015 (SB/SX)
Options:
  • A $|A|=|B|>|C|$
  • B $|A|=|B| < |C|$
  • C $|A|=|C|>|B|$
  • D $|A|=|C| < |B|$
Solution:
1504 Upvotes Verified Answer
The correct answer is: $|A|=|C|>|B|$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.