Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let α=3i^+j^ and β=2i^-j^+3k^. If β=β1-β2, where β1 is parallel to α and β2 is perpendicular to α, then β1×β2 is equal to:
MathematicsVector AlgebraJEE MainJEE Main 2019 (09 Apr Shift 1)
Options:
  • A 12(-3i^+9j^+5k^)
  • B  3i^-9j^-5k^
  • C -3i^+9j^+5k^
  • D 123i^-9j^+5k^
Solution:
1202 Upvotes Verified Answer
The correct answer is: 12(-3i^+9j^+5k^)

If two vectors are parallel then they are proportional.

So, let β1=kα

Given β=β1-β2

αβ=αβ1-αβ2   ...i

Now, α·β=3i^+j^·2i^-j^+3k^

=6-1=5

And, α is perpendicular to β1, hence αβ1=0

And, αβ2=αkα=kα2=kα2

Also, α=32+12=10

Put, all these values in the equation i, to get 5=k×10

 k=12

β1=12(3i^+j^)

=32i^+12j^

Now β2=β1-β=-12i^+32j^-3k^

 β1×β2=i^j^k^32120-1232-3

=i^-32-0-j^-92-0+k^94+14

=-32i^+92j^+52k^

=12(-3i^+9j^+5k^).

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.