Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 4\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & -3 \\ -1 & -2 & -3\end{array}\right]$ and $C=\left[\begin{array}{cccc}2 & -3 & 0 & 1 \\ 5 & -1 & -4 & 2 \\ -1 & 0 & 0 & 3\end{array}\right]$, what is $A^T B$ ?
MathematicsMatricesAP EAMCETAP EAMCET 2021 (24 Aug Shift 1)
Options:
  • A $\left[\begin{array}{ccc}4 & 0 & -3 \\ -7 & -6 & -6 \\ 4 & -8 & -18\end{array}\right]$
  • B $A^{\top} B$ is not defined
  • C $\left[\begin{array}{ccc}4 & -7 & 4 \\ 0 & -6 & -8 \\ -3 & 12 & 6\end{array}\right]$
  • D $A^T B=0$
Solution:
1068 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{ccc}4 & 0 & -3 \\ -7 & -6 & -6 \\ 4 & -8 & -18\end{array}\right]$
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 4\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & -3 \\ -1 & -2 & -3\end{array}\right]$ and $\quad C=\left[\begin{array}{cccc}2 & -3 & 0 & 1 \\ 5 & -1 & -4 & 2 \\ -1 & 0 & 0 & 3\end{array}\right]$
Now,
$$
A^T=\left[\begin{array}{cc}
1 & 0 \\
-1 & 3 \\
2 & 4
\end{array}\right], B=\left[\begin{array}{ccc}
4 & 0 & -3 \\
-1 & -2 & -3
\end{array}\right]
$$
$\Rightarrow A^T B=\left[\begin{array}{cc}1 & 0 \\ -1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ccc}4 & 0 & -3 \\ -1 & -2 & -3\end{array}\right]$
$=\left[\begin{array}{ccc}4+0 & 0+0 & -3+0 \\ -4-3 & 0-6 & 3-9 \\ 8-4 & 0-8 & -6-12\end{array}\right]$
$=\left[\begin{array}{ccc}4 & 0 & -3 \\ -7 & -6 & -6 \\ 4 & -8 & -18\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.