Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $A^{-1}=\left[\begin{array}{lll}1 & 2017 & 2 \\ 1 & 2017 & 4 \\ 1 & 2018 & 8\end{array}\right] .$ Then $|2 \mathrm{~A}|-\left|2 \mathrm{~A}^{-1}\right|$ is equal to
MathematicsDeterminantsKVPYKVPY 2017 (19 Nov SB/SX)
Options:
  • A 3
  • B $-3$
  • C 12
  • D $-12$
Solution:
1442 Upvotes Verified Answer
The correct answer is: 12
$\begin{array}{l}
2^{3}|\mathrm{~A}|-2^{3} \frac{1}{|\mathrm{~A}|} \\
\left|\mathrm{A}^{-1}\right|=\left|\begin{array}{lll}
1 & 2017 & 2 \\
1 & 2017 & 4 \\
1 & 2018 & 8
\end{array}\right| \\
\frac{1}{|\mathrm{~A}|}=-2 \Rightarrow|\mathrm{A}|=\frac{-1}{2}
\end{array}$
Put the value answer is $=12$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.