Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $A=(1,2,0), B=(2,0,-1), C=(0,-2,3)$ and $D=(-1,2,-3)$ be four points in the space. Let $\mathrm{G}_1$ be the centroid of triangle $A B C$ and $G_2$ be the centroid of tetrahedron ABCD. If $P$ divides $G_1 G_2$ in the ratio $4: 3$ internally then $\mathrm{P}=$
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2022 (20 Jul Shift 2)
Options:
  • A $\left(\frac{5}{7}, \frac{2}{7}, \frac{1}{7}\right)$
  • B $\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$
  • C $\left(\frac{4}{7}, \frac{-2}{7}, \frac{1}{7}\right)$
  • D $\left(\frac{1}{7}, \frac{-3}{7}, \frac{5}{7}\right)$
Solution:
1899 Upvotes Verified Answer
The correct answer is: $\left(\frac{5}{7}, \frac{2}{7}, \frac{1}{7}\right)$
Given points are $\mathrm{A}=(1,2,0), \mathrm{B}=(2,0,-1)$, $\mathrm{C}=(0,-2,3)$ and $\mathrm{D}=(-1,2,-3)$
Here $\mathrm{G}_1=(1,0,2 / 3)$ and $\mathrm{G}_2=(1 / 2,1 / 2,-1 / 4)$
Now $P$ divides $G_1 G_2$ in the ratio $4: 3$ internally
So, $\mathrm{P}=(5 / 7,2 / 7,1 / 7)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.