Search any question & find its solution
Question:
Answered & Verified by Expert
Let $a_{1}, a_{2}, \ldots, a_{10}$ be a G.P. If $\frac{a_{3}}{a_{1}}=25,$ then $\frac{a_{9}}{a_{5}}$ equals :
Options:
Solution:
2769 Upvotes
Verified Answer
The correct answer is:
$5^{4}$
Let $a_{1}=a, a_{2}=a r, a_{3}=a r^{2} \ldots a_{10}=a r^{9}$
where $r=$ common ratio of given G.P.
Given, $\frac{a_{3}}{a_{1}}=25$
$\Rightarrow \frac{a r^{2}}{a}=25$
$\Rightarrow r=\pm 5$
Now, $\frac{a_{9}}{a_{5}}=\frac{a r^{8}}{a r^{4}}=r^{4}=(\pm 5)^{4}=5^{4}$
where $r=$ common ratio of given G.P.
Given, $\frac{a_{3}}{a_{1}}=25$
$\Rightarrow \frac{a r^{2}}{a}=25$
$\Rightarrow r=\pm 5$
Now, $\frac{a_{9}}{a_{5}}=\frac{a r^{8}}{a r^{4}}=r^{4}=(\pm 5)^{4}=5^{4}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.