Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $a_1, a_2, a_3, \ldots$ be an A.P, such that $\frac{a_1+a_2+\ldots+a_p}{a_1+a_2+a_3+\ldots+a_q}=\frac{p^3}{q^3} ; p \neq q$. Then $\frac{a_6}{a_{21}}$ is equal to:
MathematicsSequences and SeriesJEE MainJEE Main 2013 (09 Apr Online)
Options:
  • A
    $\frac{41}{11}$
  • B
    $\frac{31}{121}$
  • C
    $\frac{11}{41}$
  • D
    $\frac{121}{1861}$
Solution:
1738 Upvotes Verified Answer
The correct answer is:
$\frac{31}{121}$
$\begin{aligned} & \frac{a_1+a_2+a_3+\ldots \ldots+a_p}{a_1+a_2+a_3+\ldots \ldots+a_q}=\frac{p^3}{q^3} \\ \Rightarrow & \frac{a_1+a_2}{a_1}=\frac{8}{1} \Rightarrow a_1+\left(a_1+d\right)=8 a_1 \\ \Rightarrow \quad & d=6 a_1 \\ & \text { Now } \frac{a_6}{a_{21}}=\frac{a_1+5 d}{a_1+20 d} \\ = & \frac{a_1+5 \times 6 a_1}{a_1+20 \times 6 a_1}=\frac{1+30}{1+120}=\frac{31}{121}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.