Search any question & find its solution
Question:
Answered & Verified by Expert
Let $a_1, a_2, a_3, \ldots$ be an A.P, such that $\frac{a_1+a_2+\ldots+a_p}{a_1+a_2+a_3+\ldots+a_q}=\frac{p^3}{q^3} ; p \neq q$. Then $\frac{a_6}{a_{21}}$ is equal to:
Options:
Solution:
1738 Upvotes
Verified Answer
The correct answer is:
$\frac{31}{121}$
$\frac{31}{121}$
$\begin{aligned} & \frac{a_1+a_2+a_3+\ldots \ldots+a_p}{a_1+a_2+a_3+\ldots \ldots+a_q}=\frac{p^3}{q^3} \\ \Rightarrow & \frac{a_1+a_2}{a_1}=\frac{8}{1} \Rightarrow a_1+\left(a_1+d\right)=8 a_1 \\ \Rightarrow \quad & d=6 a_1 \\ & \text { Now } \frac{a_6}{a_{21}}=\frac{a_1+5 d}{a_1+20 d} \\ = & \frac{a_1+5 \times 6 a_1}{a_1+20 \times 6 a_1}=\frac{1+30}{1+120}=\frac{31}{121}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.