Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and a vector $\vec{c}$ be such that $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\hat{i}+8 \hat{j}+13 \hat{k}$. If $\vec{a} \cdot \vec{c}=13$, then $(24-\vec{b} \cdot \vec{c})$ is equal to_______
Solution:
1183 Upvotes
Verified Answer
The correct answer is:
46
$\begin{aligned} & \vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}=(1,8,13) \\ & \vec{a} \times(\vec{a} \times \vec{b})+\vec{a} \times(\vec{a} \times \vec{c})+\vec{a} \times(\vec{b} \times \vec{c}) \\ & =\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\end{aligned}$
$\begin{aligned} & (\vec{a} \cdot \vec{b}) \vec{a}-a^2 \vec{b}+(\vec{a} \cdot \vec{c}) \vec{a}-a^2 \vec{c}+(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k}) \\ & \Rightarrow-26 \vec{a}-29 \vec{b}+13 \vec{a}-29 \vec{c}+13 \vec{b}+26 \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\end{aligned}$
$\begin{aligned}
& \Rightarrow \quad-13 \overrightarrow{\mathrm{a}}-16 \overrightarrow{\mathrm{b}}-3 \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}) \\
& \Rightarrow \quad-13 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}-16 \mathrm{~b}^2-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\{\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})\} \cdot \overrightarrow{\mathrm{b}} \\
& \Rightarrow \quad(-13)(-26)-16(50)-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
2 & -3 & 4 \\
1 & 8 & 13 \\
3 & 4 & -5
\end{array}\right| \\
& \Rightarrow \quad-462-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-396 \\
& \Rightarrow \quad \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-22
\end{aligned}$
Hence $24-\vec{b} \cdot \vec{c}=46$
$\begin{aligned} & (\vec{a} \cdot \vec{b}) \vec{a}-a^2 \vec{b}+(\vec{a} \cdot \vec{c}) \vec{a}-a^2 \vec{c}+(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k}) \\ & \Rightarrow-26 \vec{a}-29 \vec{b}+13 \vec{a}-29 \vec{c}+13 \vec{b}+26 \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\end{aligned}$
$\begin{aligned}
& \Rightarrow \quad-13 \overrightarrow{\mathrm{a}}-16 \overrightarrow{\mathrm{b}}-3 \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}) \\
& \Rightarrow \quad-13 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}-16 \mathrm{~b}^2-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\{\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})\} \cdot \overrightarrow{\mathrm{b}} \\
& \Rightarrow \quad(-13)(-26)-16(50)-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
2 & -3 & 4 \\
1 & 8 & 13 \\
3 & 4 & -5
\end{array}\right| \\
& \Rightarrow \quad-462-3 \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-396 \\
& \Rightarrow \quad \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-22
\end{aligned}$
Hence $24-\vec{b} \cdot \vec{c}=46$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.