Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a=2i^+3j^+4k^, b=i^-2j^-2k^ and c=-i^+4j^+3k^. If d is a vector perpendicular to both b and c, and a·d=18, then |a×d|2 is equal to
MathematicsVector AlgebraJEE MainJEE Main 2023 (06 Apr Shift 1)
Options:
  • A 640
  • B 680
  • C 720
  • D 760
Solution:
2803 Upvotes Verified Answer
The correct answer is: 720

Given that,

a=2i^+3j^+4k^, b=i^-2j^-2k^ and c=-i^+4j^+3k^.

Let us find b×c

b×c=i^j^k^1-2-2-143

=-6+8i^-3-2j^+4-2k^

b×c=2i^-j^+2k^

Since d is perpendicular to both b and c

d=λ(2i^-j^+2k^)

Also a·d=18

λ2i^+3j^+4k^.(2i^-j^+2k^)=18

9λ=18

λ=2

Now let us apply LaGrange's identity which is as follows,

|a×d|2=|a|2·|d|2-(a·d)2

=2i^+3j^+4k^24i^-2j^+4k^2-182

=720

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.