Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\mathbf{b}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ be two vectors. Then the projection vector of $\mathbf{b}$ on a vector perpendicular to $\mathbf{a}$ is
MathematicsVector AlgebraTS EAMCETTS EAMCET 2021 (06 Aug Shift 2)
Options:
  • A $-\frac{2}{3}(2 \hat{i}-\hat{j}-2 \hat{k})$
  • B $\hat{i}+4 \hat{j}+\hat{k}$
  • C $\frac{13}{3} \hat{i}+\frac{4}{3} \hat{j}-\frac{11}{3} \hat{k}$
  • D $\frac{31}{9} \hat{i}-\frac{20}{9} \hat{j}-\frac{41}{9} \hat{k}$
Solution:
1192 Upvotes Verified Answer
The correct answer is: $\frac{31}{9} \hat{i}-\frac{20}{9} \hat{j}-\frac{41}{9} \hat{k}$
Given, $\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\mathbf{b}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
The projection of vector $\mathbf{b}$ on a vector
$\begin{aligned}
\text { perpendicular to } \mathbf{a}=\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a} \\
=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}})-\left(\frac{-2}{9}\right)(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \\
=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}})+\left(\frac{4}{9} \hat{\mathbf{i}}-\frac{2}{9} \hat{\mathbf{j}}+\frac{4}{9} \hat{\mathbf{k}}\right) \\
=\frac{31}{9} \hat{\mathbf{i}}-\frac{20}{9} \hat{\mathbf{j}}-\frac{41}{9} \hat{\mathbf{k}}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.