Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\quad \overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}} \quad$ and
$\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ be three vectors. A vector in the
plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ whose projection on $\overrightarrow{\mathbf{a}}$ is of magnitude $\sqrt{\frac{2}{3}}$, is
Options:
$\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ be three vectors. A vector in the
plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ whose projection on $\overrightarrow{\mathbf{a}}$ is of magnitude $\sqrt{\frac{2}{3}}$, is
Solution:
2696 Upvotes
Verified Answer
The correct answer is:
$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
Any vector in the plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is $\overrightarrow{\mathbf{r}}=m \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
$$
=(m+1) \hat{\mathbf{i}}+(2 m+1) \hat{\mathbf{j}}+(-m-2) \hat{\mathbf{k}}
$$
Projection of $\overrightarrow{\mathbf{r}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\left|\sqrt{\frac{2}{3}}\right|$
$$
\begin{array}{l}
\therefore \frac{2(m+1)-(2 m+1)+(-m-2)}{\sqrt{6}}=\pm \sqrt{\frac{2}{3}} \\
\Rightarrow-m-1=\pm 2
\end{array}
$$
$\Rightarrow$
$m=-3$ and 1 Hence, $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
$$
=(m+1) \hat{\mathbf{i}}+(2 m+1) \hat{\mathbf{j}}+(-m-2) \hat{\mathbf{k}}
$$
Projection of $\overrightarrow{\mathbf{r}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\left|\sqrt{\frac{2}{3}}\right|$
$$
\begin{array}{l}
\therefore \frac{2(m+1)-(2 m+1)+(-m-2)}{\sqrt{6}}=\pm \sqrt{\frac{2}{3}} \\
\Rightarrow-m-1=\pm 2
\end{array}
$$
$\Rightarrow$
$m=-3$ and 1 Hence, $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.